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Abstract

In this paper the concept of field synergy (coordination) principle is briefly introduced first, and then its numerical

verification is presented. A dimensionless number, field synergy number Fc, is defined as an indication of the synergy

degree between velocity and temperature field for the entire flow and heat transfer domain. It is found that for the ideal

case, this number should equal one, and for most of the engineering heat transfer cases, its value is far from being equal

to one, showing a large room for the heat transfer enhancement study. Then the applications of the principle are dis-

cussed, with focusing being paid on the application for developing new type of enhanced techniques. Three examples are

provided to demonstrate the importance and feasibility of the field synergy principle.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Since convection heat transfer has broad applications

in various engineering areas, a large amount of studies

have been conducted in the past decades to get the heat

transfer correlations and to improve heat transfer per-

formance for different cases. However, the conventional

way to investigate convection heat transfer has been to

first classify convection as internal/external flow,

forced/natural convection, boundary layer flow/elliptic

flow, rotating flow/non-rotating flow, etc., then to deter-

mine the heat transfer coefficient, h, by both theoretical

and experimental methods, and the corresponding

dimensionless parameter, Nusselt number Nu. The Nu
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can usually be expressed as various functions of the Rey-

nolds number Re (or Grashof number Gr) and Prandtl

number Pr and heat transfer surface geometries [1,2].

Thereby, there is no unified principle, which may gener-

ally describe the performance of different types of con-

vection heat transfer, and consequently guide the

enhancement of convection heat transfer. Various kinds

of techniques have been used in the past for heat transfer

enhancement. Among them are: (a) mixing the main

flow and/or the flow in the wall region using rough sur-

face, inserts, etc., (b) reducing the boundary layer thick-

ness by using interrupted fin geometries or jet

impingement, etc., (c) creating the rotational or second-

ary flow using swirl flow devices or duct rotation, etc.,

(d) raising the turbulence intensity with rough surfaces

and turbulence promoters, etc. [3,4]. From the above

short description, it can be seen that there are two disad-

vantages for the existing techniques of heat transfer
ed.
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Nomenclature

at turbulent thermal diffusivity, m2/s

cp specific heat, J/kg K

D hydraulic diameter, m

f friction factor, dimensionless

Fc field coordination number, defined by Eq.

(13), dimensionless

Gr Grashof number, dimensionless

h heat transfer coefficient, W/m2 K

Int the term with integral in Eq. (14), W

k thermal conductivity, W/m K

L length, m

~n surface unit normal vector

Nu Nusselt number, hDh/k, dimensionless

Pr Prandtl number, dimensionless

q heat flux, W/m2

_q heat source, W/m3

r radius, m

Re Reynolds number, dimensionless

S arc length along boundary, m

St Stanton number, dimensionless

T temperature, K

T dimensionless temperature

U velocity, m/s

U U/U¥, dimensionless velocity

u,v,w velocity components, m/s

x,y,z Cartesian coordinates, m

y y/dt, dimensionless

Greek symbols

b field synergy angle between U and $T,
degree

dt thermal boundary layer thickness, m

$T temperature gradient, K

rT rT
ðT1�TwÞ=dt, dimensionless

q density, kg/m3

X domain

Subscripts

Int integral

q constant heat flux

m average

T constant wall temperature

w value on the wall surface

x based on length x

1 value at great distance from a body

Th

q
•

Th
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augmentation. First, it lacks a way to understand the

inherent universal mechanism of various techniques of

heat transfer enhancement. Second, a large additional

flow resistance, hence the pumping power, is usually

associated with the heat transfer enhancement tech-

niques, which is not favorable for practical applications.

The present paper starts from a revisit to the mecha-

nism of convective heat transfer, and then indicates that

the heat transfer rate depends not only on the flow and

temperature fields, but also on their synergy (coordina-

tion). The so-called field synergy (coordination) princi-

ple proposed by Guo et al. [5,6] is then reviewed and

its applications in the development of enhanced heat

transfer surfaces are presented. Consequently, we cannot

have only a thorough understanding of the universal

mechanism of various heat transfer enhancement tech-

niques, but also can further develop novel heat transfer

enhancement structures, which can enhance the heat

transfer with a small or reasonable increase of the pump-

ing power.
(a) Laminar boundary layer (b) conduction with a heat source

TcTc

Fig. 1. Temperature profiles for (a) laminar boundary layer

flow over a flat plate, and (b) conduction with a heat source

between two parallel plates at different constant temperatures.
2. Convective heat transfer mechanism

Consider an analog between convection and conduc-

tion, convection heat transfer is essentially the heat con-

duction with fluid motion [7]. Consider a steady, 2-D
boundary layer flow over a cold flat plate at zero

incident angle, as shown in Fig. 1(a). The energy equa-

tion is

qcp ¼ u
oT
ox

þ v
oT
oy

� �
¼ o

oy
k
oT
oy

� �
ð1Þ

The energy equation for conduction with a heat source

between two parallel plates at constant but different tem-

peratures as shown in Fig. 1(b) is

� _q ¼ o

oy
k
oT
oy

� �
ð2Þ

From Eqs. (1) and (2) and Fig. 1, it can be seen that

the convection term in the energy equation for the

boundary layer flow corresponds to the heat source term
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in the conduction equation. The difference is that the

‘‘heat source’’ term in convection is a function of the

fluid velocity. The presence of heat sources leads to in-

creased heat flux at the boundary for both the conduc-

tion and convection problems. The integral of Eq. (1)

over the thickness of the thermal boundary layer isZ dt

0

qcp u
oT
ox

þ v
oT
oy

� �
dy ¼ �k

oT
oy

����
w

¼ qw ð3Þ

where dt is the thermal boundary layer thickness.
Eq. (3) indicates that the wall heat flux is equal to the

overall strength of the heat sources inside the thermal

boundary layer. This implies that the convection heat

transfer can be enhanced by increasing the quantity of

the integral of the convection terms (heat sources) over

the thermal boundary layer.
a

b

Tf

Tw

Tw

c

de

Fig. 2. Flow and heat transfer over a backward facing step.
3. Field synergy principle

3.1. Field synergy and heat transfer performance

Eq. (3) can be rewritten with the convection term in

vector form as:Z dt

0

qcpðu � rT Þdy ¼ �k
oT
oy

����
w

¼ qw ð4Þ

From Eq. (4) it can be seen that for a certain flow rate

and temperature difference between the wall and the

incoming flow, the wall heat flux increases with the

decreasing of the included (intersection) angle between

the velocity and temperature gradient/heat flow vectors.

Eq. (4) is also valid for laminar duct flow if the upper

limit of the integral is the duct radius.

With the following dimensionless variables for the

boundary layer flow,

U ¼ U
U1

; rT ¼ rT
ðT1 � T wÞ=dt

ð5Þ

Eq. (4) can be written in the dimensionless form

Nux ¼ RexPr
Z 1

0

ðU � rT Þd�y ð6Þ

Eq. (6) gives us a more general insight on convective

heat transfer. It can be seen that there are two ways to

enhance heat transfer: (a) increasing Reynolds or/and

Prandtl number; which is well known in the literature;

(b) increasing the value of the dimensionless integration.

The vector dot product, U � rT in the dimensionless
integration in Eq. (6) can be expressed as

U � rT ¼ jU jjrT j cos b ð7Þ

where b is the included angle between the velocity vector
and the temperature gradient (heat flow vector). Eq. (7)

shows that in the convection domain there are two vec-

tor fields, U and $T, or three scalar fields, jUj, j$Tj and
cosb. Hence, the value of the integration or the strength
of the convection heat transfer depends not only on the

velocity, the temperature gradient, but also on their

synergy.

Thus the principle of field synergy for the enhance-

ment of convective heat transfer may be stated as fol-

lows: the better the synergy of velocity and

temperature gradient/heat flow fields, the higher the con-

vective heat transfer rate under the same other condi-

tions. The synergy of the two vector fields or the three

scalar fields implies that (a) the included angle between

the velocity and the temperature gradient/heat flow

should be as small as possible i.e., the velocity and the

temperature gradient should be as parallel as possible;

(b) the local values of the three scalar fields should all

be simultaneously large, i.e., larger values of cosb
should correspond to larger values of the velocity and

the temperature gradient; (c) the velocity and tempera-

ture profiles at each cross section should be as uniform

as possible. Better synergy among such three scalar fields

will lead to a larger value of the Nusselt number.

3.2. Extension of field synergy principle

Most convective heat transfer problems encountered

in engineering are of elliptic type, therefore the extension

of the field synergy concept to elliptic cases will be of

great importance. Tao et al. [8] proved that this finding

is also valid for elliptic flows. Consider a typical elliptic

convective heat transfer case—fluid flow and heat trans-

fer over a backward step, as shown in Fig. 2. The solid

walls are of constant temperature Tw, and fluid with

temperature Tf flows into the domain.

The integration of the heat sources (i.e., the convec-

tive term) over the domain is equal to the heat flux at

the wall surfaces, if the axial heat conduction in the fluid

can be neglected (for flow with Peclet number larger

than 100 [9]), as indicated in Eq. (8) by using the Gauss

theorem for reduction of the integral dimension.
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Z Z
Xabcdea

qcpðU � rT Þdxdy

¼
Z

abc
~n � krT dS þ

Z
de
~n � krT dS

¼ qw;abc þ qw;de ð8Þ

It is clear that a better synergy (i.e., decreasing the in-

cluded angle between the velocity vector and the temper-

ature gradient) will make the integration value larger,

i.e., enhancing the heat transfer. It should be noted that

even for fluid flow whose Peclet number is less than 100,

the reduction of the included angle between the velocity

and the temperature gradient can also enhance heat

transfer, though the effect is not so significant as for

the case with a larger Peclet number. Thus either for par-

abolic flows or for elliptic flows, the field synergy princi-

ple stated above is valid. The extension of above

discussion to three-dimensional cases is very straightfor-

ward, and will not be discussed here for simplicity.

For turbulent duct flow, if axial heat conduction in

the fluid can be neglected, the time-mean energy equa-

tion is:

qcp
oT
ox

þ v
oT
oy

� �
¼ o

oy
ðk þ qcpatÞ

oT
oy

� �
ð9Þ

where at is the turbulent thermal diffusivity.

The integration of Eq. (9) over the entire domain and

the use of the Gauss theorem lead to

tXqcpðU � rT ÞdX ¼
I
w

ðk þ qcpatÞ
oT
oy

ð10Þ

Since at is equal to zero at the wall surface, we have

tXqcpðU � rT ÞdX ¼
I
w

k
oT
oy
dS ¼ qw ð11Þ

Eq. (11) indicates that the wall heat flux for turbulent

duct flow, as with laminar flow, can be expressed by the

overall strength of the heat sources in the entire domain

of duct. Hence, the field synergy principle can also be

applied to turbulent duct flows and heat transfer. In

Table 1 the calculated Nusselt numbers based on Eq.

(6) (Nuint) are compared with values based on the exper-
Table 1

Comparison of the current results with standard values (Pr = 7.0)

Type Boundary condition Re

Circular tube Isothermal 20,000

40,000

Circular tube Constant flux 20,000

40,000

Square tube Isothermal 20,000

40,000
imental correlation (Nuexp), Eq. (12), which is the well-

accepted Gnielinski correlation for the turbulent heat

transfer in tubes or ducts [10]. It can be seen that the rel-

ative discrepancies between the Nuint and Nuexp are all

less than 4%.

Nu ¼ ðf =8ÞðRe� 1000ÞPr
1þ 12:7ðf =8Þ1=2ðPr2=3 � 1Þ

ð12Þ

In the calculation of Nusselt number by Eq. (6), the

dimensionless velocity and temperature distributions

are obtained from numerical simulation.

3.3. Numerical verification of field synergy principle

For some heat transfer surfaces, numerical computa-

tions were carried out to obtain the integral over the

whole computation domain and the average Nusselt

number for the configuration studied. For the simplicity

of presentation, the integral of the convective term over

the entire domain (the most left term of Eq. (4)) will be

represented by �Int�. All computations were conducted
by finite volume method, with CLEAR algorithm to

deal with the linkage between velocity and pressure

[11]. The flows computed were assumed to be in steady

state. A number of two-dimensional fluid flow and heat

transfer cases have been simulated [8,13], and for the

simplicity of presentation, only one case is presented

below. It is of periodic fully developed convective heat

transfer of turbulent air flow, and the cyclic average

Nusselt number was determined for the constant wall

temperature situation. The details of the numerical pro-

cedure, especially the implementation of the periodically

boundary conditions are provided in [12], where basi-

cally the same computer code was used and good agree-

ment between the numerical predictions and available

test data was obtained.

The turbulent flow across a 2-D parallel and stag-

gered plates is shown in Fig. 3. The low-Reynolds num-

ber k–e turbulence model was adopted. To implement
the low-Re k–e model, a very fine grid mesh is used adja-
cent to the plate surface. The mesh size is then gradually

expanded away from the surface. The first near-wall grid

point is located well within the laminar sublayer
Nuint Eq. (6) Nuexp
qw

ðTw�TmÞ �
D
k

Nuint
Nuexp

151.4 157.0 0.967

254.5 264.1 0.964

151.9 155.1 0.964

254.2 264.4 0.961

142.7 147.3 0.967

256.9 248.1 0.966



Fig. 3. Models of discrete plates. (a) Discrete parallel plates; (b)

discrete staggered plates.
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Fig. 4. Turbulent heat transfer characters across discrete plates.

(a) Variation of Int with Reynolds number; (b) variation of Nu

with Reynolds number; (c) variation of b with Reynolds

number.
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(y+ = 0.1) for all of the computations. The number of

grids outside the laminar sublayer is always lager than

85. Grid independency tests are performed to ensure

the grid-independent solution. A grid system of

304 · 92 is adopted for all computations. The variation
of the integration with Re and the plate averaged Nus-

selt numbers are presented in Fig. 4(a) and (b). To reveal

the variation trend of the included angle between veloc-

ity and temperature gradient, a domain averaged in-

cluded angle was defined as follows:

bm ¼
X

cos�1
~u � grad t
j~ujjgrad tj

� �
DV
V

ð13Þ

The domain averaged included angles between velocity

and temperature gradient for the two series of plates

are provided in Fig. 4(c). As can been there, the present

numerical results agree well with the field synergy

principle.

3.4. Field synergy number

In the above example, we take the domain averaged

included angle as the indication of field synergy for the

configurations studied. It should be noted that this indi-

cation has some limitation in the sense that if the local

included angle is small and the local velocity and tem-

perature gradient are also small, then the local good syn-

ergy does not make great contribution to the

enhancement of the convective heat transfer. As indi-

cated above, the most favorable case is that a small in-

cluded angle is accompanied by large velocity and

temperature gradients. The effect of such ideal case can

be reflected from the final results—the integral of the

convection term over the entire domain, for which the

dimensionless expression can be obtained from Eq. (6)

as follows:
Z 1

0

ðU � rT Þd�y ¼ Nux
RexPr

¼ Fc ð14Þ

where the dimensionless quantity Fc is introduced and is

designated as the field synergy (coordination) number,
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which represents the degree of synergy between the

velocity and temperature gradient fields for the entire

domain. Fc stands for the dimensionless heat source

strength (i.e., the dimensionless convection term) over

the entire domain, which physically is the indication of

the degree of synergy between the velocity and tempera-

ture gradient fields. Its value can be anywhere between

zero and one depending on the type of heat transfer sur-

face. Note that Fc and the Stanton number [14], have

identical formulas relating to the Nusselt number. How-

ever, St = Nu/RePr is strictly the relationship between

Stanton and Nusselt number and this equation is always

valid (true) regardless the type of the flow and heat

transfer surface geometry. St is an alternate to Nusselt

for expressing dimensionless heat transfer coefficient

for convective heat transfer over the heat transfer sur-

face. To further illustrate the above physical interpreta-

tion of Fc, let assume that U and $T are uniform and the
included angles, b, are equal to zero everywhere in the
domain, then Fc = 1, and

Nux ¼ RexPr ð15Þ

For this ideal case the velocity and temperature gradient

fields are completely coordinated and Nu reaches its

maximum for the given flow rate and temperature differ-

ence. Thus the meaning of Fc should be clear. It should

be noted that Fc is much smaller than unity for most

practical convective heat transfer situation, as shown

in Fig. 5. Therefore, from the view point of the field syn-

ergy principle, there is a large room open to the enhance-

ment study for the convective heat transfer.

It is interesting to note that the field synergy principle

gives us the direction to improve the convective heat
Fig. 5. Field coordination number for some convective heat

transfer conditions.
transfer for a given condition (say, flow rate and temper-

ature difference), such as the similarity theory indicates

how to correlate the convective heat transfer data. How-

ever, the specific enhanced technique which can make

better synergy for a given condition cannot obtained

from the principle itself, just as the specific heat transfer

correlation cannot be obtained from similarity theory. It

is the individual research task to find such technique.

This, of course, by no means implies that the principle

is not useful, rather, it is very useful as will be demon-

strated by a number of examples presented below.

3.5. Examples showing different degrees of synergy

In the following presentation, some experimental and

numerical examples are provided to show different de-

grees of synergy between velocity and temperature

gradient.

Zhao and Song [15] conducted an analytical and

experimental study of forced convection in a saturated

porous medium subjected to heating with a solid wall

perpendicular to the flow direction as shown in Fig.

6(a). The heat transfer rate from the wall to the bulk

fluid for such a heat transfer configuration had been

shown to be described by the simple equation Nu =

RePr at low Reynolds number region as shown in Fig.

6(b), that is Fc = 1. Obviously, the complete coordina-

tion of the velocity and heat flow fields provides the

most efficient heat transfer mode as compared with

any other convective heat transfer situations.

The flow and heat transfer across a single circular cyl-

inder with rectangular fins was numerically studied in

[16]. To numerically simulate the flow field around the

cylinder between two adjacent fins three-dimensional

body fitted coordinates were adopted. The tube wall

was kept at constant temperature and the fin surface

temperature was assumed to be equal to tube wall tem-

perature. The flow across single cylinder was also simu-

lated for comparison. Numerical results of isotherms

and velocity vectors for flow over single smooth tube

with U = 0.02 m/s are presented in Fig. 7(a) and (b),

from which it can be observed that over most part of

the computational domain (except for upstream region

where the isotherms are nearly vertical), the velocity

and the local temperature gradient are nearly perpendic-

ular each other, leading to a large field synergy angle.

The synergy angle distribution is provided in Fig. 7(c).

The average synergy angle of the whole domain is

61.7�. For the finned tube at the oncoming flow velocity
of 0.06 m/s, the fluid isotherms and the flow velocity at

the middle plane between two adjacent fin surfaces are

presented in Fig. 8(a) and (b). It can be clearly observed

that the attachment of fin to the tube surface greatly

changes the orientation of the temperature isotherms

as almost vertical so that the temperature gradient is

in almost horizontal direction. The result is that the



Fig. 7. Numerical results of velocity vectors, isotherms and

included angles for flow over single tube (U = 0.02 m/s); (a)

velocity vectors; (b) isotherms; (c) included angle distribution.

Fig. 6. Test section and Nu vs Pe for forced convection in a

saturated porous medium; (a) test section; (b) Nu versus Pe for

the wall.
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velocity and temperature gradient are almost parallel

and thus in good synergy. The local included angle dis-

tribution is shown in Fig. 8(c), and the average included

angle is now reduced to 23.6�. Computational results
further reveal that in the region of very low velocity

(for the case studied, the oncoming flow velocity less

than 0.08 m/s), the average finned tube heat transfer

coefficient varies almost linearly with the flow velocity,

once again showing a case where the local velocity and

temperature gradient is almost parallel everywhere.
4. Applications of field synergy principle in developing

enhanced heat transfer surfaces

The field synergy principle has two types of applica-

tions. First it can facilitate to have a better understand-

ing of known heat transfer phenomena or experimental

results; Second, and more important, is to guide the

development of novel enhanced heat transfer structures.

In the following, two examples will be provided to show
the first type of application and then focus will be paid

to the second type of application.

It is well known that Nuq = 4.36 for the fully devel-

oped laminar tube flow with the constant heat flux

boundary condition, while NuT = 3.66 for the isothermal

boundary condition. Our numerical results have shown

that such a difference lies in the different included angle

between U and $T for the two thermal boundary

conditions.



Fig. 8. Velocity vectors, isothermals and included angle distri-

butions for flow over finned tube (U = 0.06 m/s); (a) velocity

vectors; (b) isotherms; (c) included angle distribution.
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Kang and Kim found by experiments that for the

slotted fin surface the locations of the strips has great ef-

fect on the heat transfer and friction factor characteris-

tics [17]. For the same number of strips, they found that

the performance of the slotted fin surface for which the

strips are located in the rear part of the fin is better than

that in which the strips are located in the front part.

Numerical simulation conducted by Qu et al. [18] found
that the domain averaged synergy angle of the fin with

strips located in the rear part is smaller than with strips

positioned in the front part.

Now attention is turned to the development of new

types of enhanced heat transfer surfaces by application

of the field coordination principle. There are several

ways to improve the synergy.

4.1. Variation of the velocity field

The velocity field in the duct flow can be varied by

changing the duct configuration. For example, vortices

occur when the flow goes through a specially designed

alternatively twisted elliptic tube, as shown in Fig. 9(a)

[19]. Fig. 9(b) gives the comparison results for the Nus-

selt number and friction factor between the test results

for water and lubricating oil of the enhanced tube

(denoted by Nue and fe) and a smooth circular tube

(denoted by Nus and fs). It can be seen that a great

enhancement can be made with a reasonable increase

in the friction, and for the laminar flow case, the ratio

of heat transfer enhancement is even much larger than

that of the friction factor increase. Numerical results

shown in Fig. 9(c) reveals that at each cross section there

are several vortices which significantly improve the syn-

ergy between the velocity and the temperature field.

From Fig. 9(c), it can be seen that at the locations where

isotherms crossly intersected by the flow velocities the

synergy is improved. For a straight elliptic tube there

is no such vortex formed in the cross section and the

synergy between velocity and temperature field is much

worse, and hence the heat transfer.

4.2. Improved the uniformity of the temperature profiles

Inserts composed of sparse metal filaments are used

in a circular tube to increase the uniformity of the tem-

perature profile, which improves the field synergy be-

tween the velocity and heat flow fields. The filaments

are normal to the tube wall as shown in Fig. 10(a) and

(b) and thin enough to produce only slight additional in-

creases in the pressure drops. Such kind of fins is neither

for surface extension, nor for disturbance promotion,

but for improvement of field synergy (coordination).

Experimental results for this novel device are plotted

in Fig. 10(c) [20]. The performance evaluation criteria

(PEC), defined as (Nu/Nu0)/(f/f0)1/3, represents the heat

transfer enhancement for a given pumping power, where

the reference case for Nu0 and f0 is the fully developed

laminar tube flow. Compared with most conventional

enhanced tubes with air as the working medium in which

the performance values usually less than 2 [3], this en-

hanced tube based on the principle of field-coordinated

enhancement has performance values much larger than

2 at Re ranging from 200 to 3500.



Fig. 9. Alternating elliptic axis tube and its heat transfer characters (Re = 2 · 104). (a) Alternating elliptical axis tubes; (b) comparison
of alternating elliptical axis tube with smooth tube; (c) velocity and temperature fields simulation in the cross section.
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Fig. 11. Performance comparisons of slotted fin and plain plate

fin. (a) Front sparse and rear dense distribution of strips; (b)

comparison of Nu under identical pressure drop; (c) computa-

tion of domain averaged intersection angle.

Fig. 10. Experimental results for tube with metal filament

inserts. (a) Structure 1; (b) structure 2; (c) comparison of heat

transfer performance.
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4.3. Adjust the locations of the strips in the fin surface

For air flow across three-row tube finned surface

some specially designed parallel slotted fin surfaces are

numerically investigated with the strips position accord-

ing to a rule called ‘‘front sparse and rear dense’’ as

shown in Fig. 11(a) [21]. Numerical results show that

such kind of enhanced surface has much higher heat

transfer performance than that of a plain fin surface.

Fig. 11(b) presents a comparison of the Nusselt numbers

under the identical pumping power constraint. The supe-

rior performance of the parallel slotted fin studied is

very obvious. Such special slotted fin surface is designed

using the field synergy principle: the locations of the

strips are found by numerical analysis such that the do-

main averaged synergy angle is almost the smallest. Such

nearly optimum configuration was searched through

several arrangements of the strips along the flow direc-

tion. Fig. 11(c) provides the domain average intersection

angle of the plain plate fin and the slotted fin with strips

arranged according to the rule of front sparse and rear

dense. It can be seen that the intersection angle of the

proposed slit fin is much less than of the plain plate

fin, indicating a better synergy of the slotted fin surface.
5. Concluding remarks

(1) The field synergy principle indicates that improving

synergy for the velocity and temperature gradient/

heat flow fields can markedly enhance heat transfer
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with less increased flow resistance, which will find

widespread applications in many engineering fields.

(2) The field synergy number, Fc, measures the synergy

degree of the fluid velocity and temperature gradi-

ent/heat flow fields for the entire flow domain.

According to the field synergy principle the upper

limit of convection heat transfer for a fixed flow

rate and a given temperature difference is Fc = 1

or Nu = RePr. Therefore, a large room of improve-

ment opens to most of the convective heat transfer

processes encountered in engineering practice where

the value of Fc is much less than unity.

(3) The field synergy principle can be used enhancing

our understanding of some well-known heat trans-

fer phenomena and experimental results. It also

provide very useful rule to improve surface struc-

ture for a better heat transfer performance.

(4) There are several ways to improve the synergy

between the velocity and temperature gradient/heat

flow fields, including varying the velocity and tem-

perature boundary conditions, varying the velocity

field in duct flows, the use of specially designed

inserts, tubes, and fins, and the adoption of parallel

slotted fin surface with front sparse and rear dense

strip position.
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